在 UNetGenerator
的 forward
方法中,之所以會有 (fake_B, encoded_real_A, encoded_fake_B)
三種回傳結果,主要是因為:
fake_B
:最終產生的合成字型影像(從real_A
轉換成 Zen Maru Gothic 風格的影像)。encoded_real_A
:real_A
經過 UNet Encoder 後的潛在向量(latent code),用於保持風格一致性與對比學習。encoded_fake_B
:fake_B
經過相同 Encoder 後的潛在向量,用來計算Lconst_penalty
(對應self.mse(self.encoded_real_A, self.encoded_fake_B)
),以確保生成結果與輸入的內容保持一致。
簡化並維持原功能的方法
可以改寫 UNetGenerator
的 forward
方法,將 encoded_real_A
與 encoded_fake_B
的計算邏輯分離,讓 forward
只輸出 fake_B
,但仍然能在 Zi2ZiModel
訓練過程中獲取 encoded_real_A
和 encoded_fake_B
,以減少 UNet 內部的複雜度。
class UNetGenerator(nn.Module):
def __init__(self, input_nc=3, output_nc=3, embedding_num=40, embedding_dim=128, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UNetGenerator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1),
norm_layer(ngf),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1),
norm_layer(ngf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ngf * 2, embedding_dim, kernel_size=4, stride=2, padding=1),
norm_layer(embedding_dim),
nn.LeakyReLU(0.2, True),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(embedding_dim, ngf * 2, kernel_size=4, stride=2, padding=1),
norm_layer(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, kernel_size=4, stride=2, padding=1),
norm_layer(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, output_nc, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
self.embedder = nn.Embedding(embedding_num, embedding_dim)
def encode(self, x):
return self.encoder(x).view(x.shape[0], -1)
def forward(self, x, style_or_label=None):
if style_or_label is not None and 'LongTensor' in style_or_label.type():
style = self.embedder(style_or_label).view(style_or_label.shape[0], -1, 1, 1)
else:
style = style_or_label
encoded_x = self.encoder(x)
if style is not None:
encoded_x = torch.cat([encoded_x, style], dim=1)
fake_B = self.decoder(encoded_x)
return fake_B
如何應用這個簡化的模型
在 Zi2ZiModel
的 forward
方法中,分離 encoded_real_A
和 encoded_fake_B
的計算:
def forward(self):
self.fake_B = self.netG(self.real_A, self.labels)
self.encoded_real_A = self.netG.encode(self.real_A)
self.encoded_fake_B = self.netG.encode(self.fake_B)
這樣可以:
- 簡化
UNetGenerator
,使forward
只負責fake_B
的生成,編碼部分則獨立為encode
方法,讓網絡結構更清晰。 - 減少不必要的回傳值,讓
forward
保持單一功能,而encoded_real_A
和encoded_fake_B
仍可用於Lconst_penalty
計算。
這樣的設計應該能讓 UNetGenerator
在維持原有功能的同時更加直觀,並有助於提升學習穩定性! 🚀
這裡的 UNetGenerator
仍然使用 UnetSkipConnectionBlock
進行層級式的影像生成。由於你希望簡化回傳的結果,同時保留風格轉換的核心功能,我們可以對 forward
方法進行調整,讓它只回傳 fake_B
,而 encoded_real_A
和 encoded_fake_B
的部分可以在 UnetSkipConnectionBlock
的 innermost
層做處理。以下是簡化後的 UNetGenerator
版本:
更新後的 UNetGenerator
- 主要改動
forward
方法調整,確保回傳結構簡潔UnetSkipConnectionBlock
的innermost
層處理encoded_real_A
encoded_fake_B
由fake_B
再次輸入netG
來獲得
調整後的 UNetGenerator
class UNetGenerator(nn.Module):
def __init__(self, input_nc=3, output_nc=3, num_downs=8, ngf=64, embedding_num=40, embedding_dim=128,
norm_layer=nn.BatchNorm2d, use_dropout=False, self_attention=False, residual_block=False, blur=False):
super(UNetGenerator, self).__init__()
# 最底層(innermost),負責風格嵌入處理
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None,
norm_layer=norm_layer, layer=1, embedding_dim=embedding_dim,
self_attention=self_attention, residual_block=residual_block, blur=blur, innermost=True)
# 中間層
for index in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, layer=index+2, use_dropout=use_dropout,
self_attention=self_attention, residual_block=residual_block, blur=blur)
# 上層(恢復影像解析度)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, layer=5, self_attention=self_attention,
residual_block=residual_block, blur=blur)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, layer=6, self_attention=self_attention,
residual_block=residual_block, blur=blur)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, layer=7, self_attention=self_attention,
residual_block=residual_block, blur=blur)
# 最外層(outermost),負責輸出最終影像
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block,
norm_layer=norm_layer, layer=8, self_attention=self_attention,
residual_block=residual_block, blur=blur, outermost=True)
self.embedder = nn.Embedding(embedding_num, embedding_dim)
def forward(self, x, style_or_label=None):
""" 生成 fake_B,並獲取 encoded_real_A """
if style_or_label is not None and 'LongTensor' in style_or_label.type():
style = self.embedder(style_or_label)
else:
style = style_or_label
# `self.model` 會返回 `fake_B` 和 `encoded_real_A`
fake_B, encoded_real_A = self.model(x, style)
return fake_B, encoded_real_A
調整後的 UnetSkipConnectionBlock
- 主要改動
innermost
層回傳encoded_real_A
outermost
層處理fake_B
- 內部層(非
innermost
/outermost
)確保 skip connection 正確傳遞資訊
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None,
norm_layer=nn.BatchNorm2d, layer=0, embedding_dim=128,
use_dropout=False, self_attention=False, residual_block=False, blur=False,
outermost=False, innermost=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.innermost = innermost
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
self.down = nn.Sequential(downconv)
self.up = nn.Sequential(uprelu, upconv, nn.Tanh())
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc + embedding_dim, outer_nc, kernel_size=4, stride=2, padding=1)
self.down = nn.Sequential(downrelu, downconv)
self.up = nn.Sequential(uprelu, upconv, upnorm)
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
self.down = nn.Sequential(downrelu, downconv, downnorm)
self.up = nn.Sequential(uprelu, upconv, upnorm)
if use_dropout:
self.up.add_module("dropout", nn.Dropout(0.5))
self.submodule = submodule
def forward(self, x, style=None):
""" 定義 U-Net 跳接連結機制 """
if self.innermost:
encoded = self.down(x)
if style is not None:
encoded = torch.cat([style.view(style.shape[0], style.shape[1], 1, 1), encoded], dim=1)
decoded = self.up(encoded)
return torch.cat([x, decoded], 1), encoded.view(x.shape[0], -1)
elif self.outermost:
encoded = self.down(x)
if self.submodule:
sub_output, encoded_real_A = self.submodule(encoded, style)
else:
sub_output = encoded
decoded = self.up(sub_output)
return decoded, encoded_real_A
else:
encoded = self.down(x)
if self.submodule:
sub_output, encoded_real_A = self.submodule(encoded, style)
else:
sub_output = encoded
decoded = self.up(sub_output)
return torch.cat([x, decoded], 1), encoded_real_A
優化後的回傳結果
- 簡化回傳結果
UNetGenerator.forward(x, style_or_label)
現在只回傳(fake_B, encoded_real_A)
fake_B
是生成的風格字體encoded_real_A
是原始字體的嵌入表示
- 簡潔且保持功能完整
- 仍保留
encoded_real_A
來計算contrastive loss
encoded_fake_B
可由netG(fake_B)
獲取,而不必在forward
時回傳
- 仍保留
這樣的簡化方式應該能達到你的需求,同時維持 Zi2ZiModel
的學習效果。這樣應該能幫助你的字型風格轉換更穩定!🚀
gemini
為了簡化 UNetGenerator
的設計,同時盡量維持原有功能,我們可以調整 UnetSkipConnectionBlock
的 forward
方法,使其只返回必要的輸出,同時將編碼特徵的提取集中在 UNetGenerator
的 forward
方法中。
修改後的 UNetGenerator
和 UnetSkipConnectionBlock
:
Python
import torch
import torch.nn as nn
import functools
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, embedding_dim=128, norm_layer=nn.BatchNorm2d,
use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.innermost = innermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc + embedding_dim, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
up = up + [nn.Dropout(0.5)]
self.submodule = submodule
self.down = nn.Sequential(*down)
self.up = nn.Sequential(*up)
def forward(self, x, style=None):
if self.innermost:
encode = self.down(x)
if style is None:
return encode
enc = torch.cat([style.view(style.shape[0], style.shape[1], 1, 1), encode], 1)
dec = self.up(enc)
return torch.cat([x, dec], 1)
elif self.outermost:
enc = self.down(x)
if style is None:
return self.submodule(enc)
sub = self.submodule(enc, style)
dec = self.up(sub)
return dec
else:
enc = self.down(x)
if style is None:
return self.submodule(enc)
sub = self.submodule(enc, style)
dec = self.up(sub)
return torch.cat([x, dec], 1)
class UNetGenerator(nn.Module):
def __init__(self, input_nc=3, output_nc=3, num_downs=8, ngf=64, embedding_num=40, embedding_dim=128,
norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UNetGenerator, self).__init__()
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
innermost=True, embedding_dim=embedding_dim)
for _ in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block,
outermost=True,
norm_layer=norm_layer)
self.embedder = nn.Embedding(embedding_num, embedding_dim)
self.innermost_encoder = None
def forward(self, x, style_or_label=None):
if style_or_label is not None and 'LongTensor' in style_or_label.type():
out = self.model(x, self.embedder(style_or_label))
else:
out = self.model(x, style_or_label)
# 提取編碼特徵
self.innermost_encoder = self.model.submodule.submodule.submodule.submodule.submodule.submodule.submodule.down(x) # 假設num_downs=8
return out, self.innermost_encoder, self.model(out, None).view(out.shape[0], -1) #計算fake_B的encode
修改說明:
UnetSkipConnectionBlock
:forward
方法簡化,只返回連接後的特徵或解碼後的輸出。- 移除
encode
的直接返回。
UNetGenerator
:- 在
forward
方法中,通過self.model.submodule...down(x)
提取innermost
區塊的編碼特徵,並將其保存到self.innermost_encoder
。 forward
方法返回(out, self.innermost_encoder, self.model(out, None).view(out.shape[0], -1))
,對應(fake_B, encoded_real_A, encoded_fake_B)
。encoded_fake_B
通過將生成結果out
重新輸入到self.model
中,且風格輸入為None
,來得到編碼特徵。
- 在
優點:
- 簡化
UnetSkipConnectionBlock
: 減少了forward
方法的複雜性,提高了代碼的可讀性。 - 集中特徵提取: 將編碼特徵的提取集中在
UNetGenerator
中,使得代碼結構更清晰。 - 保持原有功能: 仍然可以得到
fake_B
、encoded_real_A
和encoded_fake_B
,用於後續的損失函數計算。
注意事項:
self.model.submodule...down(x)
的深度需要根據num_downs
的值進行調整。- 這種簡化方法假設
innermost
區塊的位置是固定的。如果網絡結構發生變化,需要相應地修改代碼。 - 由於
encoded_fake_B
是將生成結果重新輸入生成器中,這會增加一些額外的計算量。
這個修改後的版本在保持原有功能的基礎上,提高了代碼的清晰度和可讀性。