你的理解幾乎是對的,但我們來精準分析一下:
🔍 關鍵點:
你提到的是想在 encoder
每層加 ResBlock
或 Attention
,這就取決於 你希望模組套用在什麼資料上。
你目前的流程是:
encoded = self.down(x) # 這是 encoder(通常是 conv)
if self.attn_block:
encoded = self.attn_block(encoded)
這代表:
attn_block
是加在 down 之後的 encoded feature map 上。- 所以現在 attention 是套用在 下採樣後的特徵 上。
✅ 如果你想 在 skip connection 前 加上 ResBlock 或 Attention:
那你想調整的是下圖中的位置:
x ─┐
↓
[ ResBlock / Attention ]
↓
[ Down ]
↓
這種做法的確會讓 skip connection(例如 concat)能接收到經過強化處理的特徵。
✅ 你該怎麼改?
你要將 resblock
或 attn_block
放在 down
之前,像這樣:
def forward(self, x, style=None):
# 加入 pre-encoder 的處理
if hasattr(self, 'resblock'):
x = self.resblock(x)
if self.attn_block:
x = self.attn_block(x)
encoded = self.down(x) # DownSampling happens AFTER ResBlock or Attention
這樣做會讓你調整的模組作用於 encoder input,而不是下採樣後的 feature map。這樣 skip connection 接收的是更有表達力的資訊,而不是僅做過 conv down 的粗略特徵。
🎯 額外建議:
- 若你做的是字體遷移任務,很多細節都在 skip connection 中保留,skip 中加入 attention/resblock 會幫助保持筆劃形狀、避免轉換後失真。
- 你可以設計:
if self.use_pre_attn: x = self.attn_block(x)
需要我幫你補整段調整後的 forward 邏輯嗎?或者你想測試不同位置的效果?
當然可以!這裡是你原本的 forward
方法,加上 在 encoder 前(也就是 skip connection 輸出之前)插入 ResBlock
或 Attention
的版本。已包含可選的 resblock
和 attn_block
:
✅ 調整後 forward
方法:
def forward(self, x, style=None):
# 如果有 pre-attention 或 ResBlock,就先對輸入進行處理
if hasattr(self, 'resblock') and self.resblock is not None:
x = self.resblock(x)
if hasattr(self, 'attn_block') and self.attn_block is not None:
x = self.attn_block(x)
# downsampling 之後的特徵
encoded = self.down(x)
if self.innermost:
if hasattr(self, 'transformer_block'):
encoded = self.transformer_block(encoded)
if hasattr(self, 'film') and self.film is not None:
encoded = self.film(encoded, style)
decoded = self.up(encoded)
# 尺寸對齊
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
# ResSkip
if self.res_skip:
decoded = self.res_skip(decoded)
# concat 原始輸入與上採樣結果,並回傳 skip feature
return torch.cat([x, decoded], 1), encoded.contiguous().view(x.shape[0], -1)
else:
sub_output, encoded_real_A = self.submodule(encoded, style)
decoded = self.up(sub_output)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if self.res_skip:
decoded = self.res_skip(decoded)
if self.outermost:
return decoded, encoded_real_A
else:
return torch.cat([x, decoded], 1), encoded_real_A
✅ 建議你的 __init__
中這樣初始化:
if use_pre_resblock:
self.resblock = YourResBlockModule(in_channels)
else:
self.resblock = None
if use_pre_attention:
self.attn_block = YourAttentionModule(in_channels)
else:
self.attn_block = None
這樣整個模組就具有彈性,可以依據需求開關不同模組。
需要我幫你補上對 ResBlock
/ Attention
模組的定義範例嗎?或者你想測試 concat skip
vs residual skip
結構差異?
當然可以!以下是針對 UNet encoder 中使用的 ResBlock 和 輕量 Attention 模組(使用 Linear Attention 為例) 的定義範例,簡潔而實用,方便你插入 encoder 前的 skip connection。
🔧 1. ResBlock
範例(可搭配 FiLM)
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlock(nn.Module):
def __init__(self, channels, norm_layer=nn.BatchNorm2d):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm1 = norm_layer(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm2 = norm_layer(channels)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
return self.relu(out + identity)
🧠 2. LinearAttentionBlock
(輕量 Attention)
這裡用的是簡單版本的線性 Attention,適合放在中低層中節省記憶體:
class LinearAttentionBlock(nn.Module):
def __init__(self, dim, heads=4):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_q = nn.Conv2d(dim, dim, 1, bias=False)
self.to_k = nn.Conv2d(dim, dim, 1, bias=False)
self.to_v = nn.Conv2d(dim, dim, 1, bias=False)
self.to_out = nn.Sequential(
nn.Conv2d(dim, dim, 1),
nn.BatchNorm2d(dim)
)
def forward(self, x):
b, c, h, w = x.shape
q = self.to_q(x).reshape(b, self.heads, c // self.heads, h * w)
k = self.to_k(x).reshape(b, self.heads, c // self.heads, h * w)
v = self.to_v(x).reshape(b, self.heads, c // self.heads, h * w)
k = k.softmax(dim=-1) # attention weights
context = torch.einsum('bhcd,bhce->bhde', k, v) # [b, h, c//h, c//h]
out = torch.einsum('bhde,bhcd->bhce', context, q) # [b, h, c//h, hw]
out = out.reshape(b, c, h, w)
return self.to_out(out + x)
🔌 如何用在 UNet 模組中
if use_pre_resblock:
self.resblock = ResBlock(in_channels)
else:
self.resblock = None
if use_pre_attention:
self.attn_block = LinearAttentionBlock(in_channels)
else:
self.attn_block = None
這樣你就可以:
- 在 encoder 的每層加入 feature enhancement。
- 選擇是否加入
ResBlock
/Attention
。 - 用更低計算量的
LinearAttentionBlock
,取代原本的Self-Attention
。
如果你還想讓這兩個模組支援 FiLM
調節(使用 style embedding),我也可以幫你補上對應版本,要嗎?
好,這邊是加上 FiLM 調節(Feature-wise Linear Modulation) 的版本,讓 ResBlock
和 LinearAttentionBlock
都可以根據 style embedding 動態調整輸出特徵,進一步強化風格遷移的能力。
🎛 FiLM 模組定義(可共用)
class FiLM(nn.Module):
def __init__(self, embedding_dim, num_features):
super(FiLM, self).__init__()
self.gamma = nn.Linear(embedding_dim, num_features)
self.beta = nn.Linear(embedding_dim, num_features)
def forward(self, x, style):
# x: [B, C, H, W], style: [B, D]
gamma = self.gamma(style).unsqueeze(2).unsqueeze(3)
beta = self.beta(style).unsqueeze(2).unsqueeze(3)
return gamma * x + beta
🔧 FiLM 化 ResBlock
class FiLMResBlock(nn.Module):
def __init__(self, channels, style_dim, norm_layer=nn.BatchNorm2d):
super(FiLMResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm1 = norm_layer(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm2 = norm_layer(channels)
self.relu = nn.ReLU(inplace=True)
self.film = FiLM(style_dim, channels)
def forward(self, x, style):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.film(out, style)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.film(out, style)
return self.relu(out + identity)
🧠 FiLM 化 LinearAttentionBlock
class FiLMLinearAttentionBlock(nn.Module):
def __init__(self, dim, style_dim, heads=4):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_q = nn.Conv2d(dim, dim, 1, bias=False)
self.to_k = nn.Conv2d(dim, dim, 1, bias=False)
self.to_v = nn.Conv2d(dim, dim, 1, bias=False)
self.to_out = nn.Sequential(
nn.Conv2d(dim, dim, 1),
nn.BatchNorm2d(dim)
)
self.film = FiLM(style_dim, dim)
def forward(self, x, style):
b, c, h, w = x.shape
q = self.to_q(x).reshape(b, self.heads, c // self.heads, h * w)
k = self.to_k(x).reshape(b, self.heads, c // self.heads, h * w)
v = self.to_v(x).reshape(b, self.heads, c // self.heads, h * w)
k = k.softmax(dim=-1)
context = torch.einsum('bhcd,bhce->bhde', k, v)
out = torch.einsum('bhde,bhcd->bhce', context, q).reshape(b, c, h, w)
out = self.to_out(out)
out = self.film(out, style)
return out + x
✅ 使用方式範例
在 UNet block 的 forward()
裡呼叫時:
if self.resblock is not None:
x = self.resblock(x, style)
if self.attn_block is not None:
x = self.attn_block(x, style)
需要我幫你整合進 UNet Block 的初始化與 forward 嗎?還是你想先試著插入?
—
以下是整合了 FiLM-ResBlock 與 FiLM-Attention 模組的 UNet block 範例(適用於 Encoder / Decoder Block 中),會在 skip 之前先經過 resblock
與 attn_block
,並可根據 style
embedding 調節特徵表現。
🧱 UNetBlock
(整合 FiLM-ResBlock + FiLM-Attn)
class UNetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
style_dim=None,
down=True,
submodule=None,
innermost=False,
outermost=False,
use_resblock=False,
use_attn=False,
):
super(UNetBlock, self).__init__()
self.innermost = innermost
self.outermost = outermost
self.submodule = submodule
self.style_dim = style_dim
# 下採樣或上採樣模組
self.down = nn.Conv2d(in_channels, out_channels, 4, 2, 1) if down else nn.Identity()
self.up = nn.ConvTranspose2d(out_channels * 2, in_channels, 4, 2, 1) if not outermost else nn.ConvTranspose2d(out_channels, in_channels, 4, 2, 1)
# 選配模組
self.resblock = FiLMResBlock(out_channels, style_dim) if use_resblock and style_dim is not None else None
self.attn_block = FiLMLinearAttentionBlock(out_channels, style_dim) if use_attn and style_dim is not None else None
# 中間模組 (最底層)
if innermost:
self.transformer_block = TransformerBlock(out_channels) # 如需
self.film = FiLM(style_dim, out_channels)
self.res_skip = FiLMResBlock(in_channels, style_dim) if use_resblock and style_dim is not None else None
def forward(self, x, style=None):
encoded = self.down(x)
if self.resblock:
encoded = self.resblock(encoded, style)
if self.attn_block:
encoded = self.attn_block(encoded, style)
if self.innermost:
if hasattr(self, 'transformer_block'):
encoded = self.transformer_block(encoded)
if hasattr(self, 'film') and self.film is not None:
encoded = self.film(encoded, style)
decoded = self.up(encoded)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if self.res_skip:
decoded = self.res_skip(decoded, style)
return torch.cat([x, decoded], 1), encoded.contiguous().view(x.shape[0], -1)
else:
sub_output, encoded_real_A = self.submodule(encoded, style)
decoded = self.up(sub_output)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if self.res_skip:
decoded = self.res_skip(decoded, style)
if self.outermost:
return decoded, encoded_real_A
else:
return torch.cat([x, decoded], 1), encoded_real_A
✅ 用法範例(建立 UNet)
block = UNetBlock(
in_channels=64,
out_channels=128,
style_dim=128,
down=True,
use_resblock=True,
use_attn=True,
submodule=sub_unet_block
)
如果你是用遞迴組裝 U-Net,可以幫你再包裝成組合式建構方法。有需要也能整合進整個 Zi2ZiModel
架構中。要嗎?
import torch
import torch.nn as nn
class FiLM(nn.Module):
def init(self, embedding_dim, num_features):
super(FiLM, self).init()
self.gamma = nn.Linear(embedding_dim, num_features)
self.beta = nn.Linear(embedding_dim, num_features)
def forward(self, x, style):
gamma = self.gamma(style).unsqueeze(2).unsqueeze(3)
beta = self.beta(style).unsqueeze(2).unsqueeze(3)
return gamma * x + beta
class FiLMResBlock(nn.Module):
def init(self, channels, style_dim, norm_layer=nn.BatchNorm2d):
super(FiLMResBlock, self).init()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm1 = norm_layer(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.norm2 = norm_layer(channels)
self.relu = nn.ReLU(inplace=False) # ✅ 改為非 in-place
self.film = FiLM(style_dim, channels)
def forward(self, x, style):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.film(out, style)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.film(out, style)
out = out + identity # ✅ 改為 out = out + identity 而非 in-place
out = self.relu(out)
return out
class FiLMLinearAttentionBlock(nn.Module):
def init(self, dim, style_dim, heads=4):
super().init()
self.heads = heads
self.scale = dim ** -0.5
self.to_q = nn.Conv2d(dim, dim, 1, bias=False)
self.to_k = nn.Conv2d(dim, dim, 1, bias=False)
self.to_v = nn.Conv2d(dim, dim, 1, bias=False)
self.to_out = nn.Sequential(
nn.Conv2d(dim, dim, 1),
nn.BatchNorm2d(dim)
)
self.film = FiLM(style_dim, dim)
def forward(self, x, style):
b, c, h, w = x.shape
q = self.to_q(x).reshape(b, self.heads, c // self.heads, h * w)
k = self.to_k(x).reshape(b, self.heads, c // self.heads, h * w)
v = self.to_v(x).reshape(b, self.heads, c // self.heads, h * w)
k = k.softmax(dim=-1)
context = torch.einsum('bhcd,bhce->bhde', k, v)
out = torch.einsum('bhde,bhcd->bhce', context, q).reshape(b, c, h, w)
out = self.to_out(out)
out = self.film(out, style)
out = out + x # ✅ 非 in-place 加法
return out