在 antigravity 加入 vgg16 到 zi2zi, chatgpt review 結果

下面我會把整段程式完整審查,指出 邏輯錯誤 / 潛在 Bug / 損失設計問題 / VGG16 與你自己 Encoder embedding 的不一致問題,並提出具體修正建議更好的超參數設定


第一部分:你的 Training Loop / forward / loss 設計 — 明確錯誤與建議


❗ 重大問題 1:Perceptual Loss layer_index = 15 (relu3_3) 對字體/黑白影像完全不合適

你目前用:

PerceptualLoss(layer_index=15)   # relu3_3

這是 VGG16 的高語意層,對字體 / 線條圖像幾乎沒意義。

❗ 問題:

VGG16 是用 ImageNet 訓練的,relu3_3 之後開始專注於:

  • dogs, cars, textures, edges with semantic context
  • natural object structure

你的任務(Zi2Zi、字型、黑白):

  • 高度依賴筆畫幾何
  • 不含自然語意

relu3_3 會讓 loss 非常 noisy,對 Generator 發出強烈的錯誤梯度。

✔ 建議

只用 VGG 的低層特徵

Index建議
relu1_23✔ 優先使用
relu2_28✔ 可以使用
relu3_315❌ 不建議 (語意層)

➡ 建議你把 layer_index 調成 3 或 8


❗ 重大問題 2:VGG16 space 與 UNet embedding space 完全不一致

你現在的 const_loss:

fake_B_emb, real_B_emb = UNet return_feat()
self.loss_const = self.l1_loss(fake_B_emb, real_B_emb)

而 perceptual loss:

self.perceptual_loss(fake_B, real_B)

→ 兩者是在 完全不同空間

Loss來自哪裡語意特徵尺度與影像相關性
Const LossUNet bottleneck embedding字體的空間特徵low-level/geometry-based對字形精準
VGG16 PerceptualImageNet VGG自然影像語意high-level可能錯誤引導

兩個 loss 的梯度方向會產生衝突,尤其是在字型任務。


❗ 重大問題 3:Generator loss 裡同時乘上 4 個高強度 loss → 梯度不穩

你目前的權重:

L1_penalty = 100
Lconst_penalty = 15
Lperceptual_penalty = 1?  or >
GAN = 1
Category_loss ~1

→ L1 * 100 已經非常強
→ const_loss * 15 也很強
→ 再加 perceptual_loss * (未知?)
→ GAN 的比例完全被壓掉

在這種 setup 下:

❗ Generator 會幾乎完全忽略 GAN,只做 regression

(這會讓結果變模糊、缺乏銳利邊緣)


❗ 重大問題 4:PerceptualLoss 的 mean/std 會在 forward 中動態 .to()(可能破壞 no-grad 特性)

你寫了:

if input_img.is_cuda and not self.mean.is_cuda:
    self.mean = self.mean.to(input_img.device)

這會:

  • 修改 module buffer
  • 可能導致梯度圖變化
  • 不建議在 forward 中使用 .to()

✔ 正確方式:
在初始化時就移動到 GPU,而不是 forward 時改 buffer。


❗ 重大問題 5:Discriminator loss 的 category loss 權重不一致(D 乘 0.5,G 不乘 0.5)

看這段:

self.category_loss_D = (real_category_loss + fake_category_loss_d) * self.Lcategory_penalty
self.d_loss = (loss_D_real + loss_D_fake) * 0.5 + self.category_loss_D * 0.5

後面又用了:

fake_category_loss_G = self.category_loss(fake_category_logits, labels) * self.Lcategory_penalty

這會造成:

  • D 的 category loss 被縮減為 0.5 倍
  • G 的 category loss 全額

→ 不對稱

我建議保持一致。


❗ 重大問題 6:Discriminator 的 pred_fake 用 updated D(不是 standard GAN 方式)

你用:

pred_fake = self.netD(fake_AB)

而 D 已經更新過。

Standard GAN 兩種方式都有人用,但:

  • 若使用 non-saturating GAN loss
  • 通常 pred_fake 會用 更新後的 D(你目前即是如此)

所以這不是錯誤,只要你 aware。


❗ 重大問題 7:perceptual_loss 可能太強,造成梯度不穩

在字體任務上,建議:

L1_penalty             = 100
Lconst_penalty         = 5–10
Lperceptual_penalty    = 0.01–0.05
GAN                    = 1
Category               = 1

🔍 總體結論:最大的問題在 VGG16(不一致性 + 權重過強)

問題嚴重度
VGG16 層太深(relu3_3)❗❗❗
VGG space 與你 UNet embedding space 衝突❗❗❗
loss 權重比例失衡❗❗
perceptual loss 對字型不適合❗❗
forward 動態移動 mean/std
D/G category loss 權重不一致

⭐ 建議你改善成以下版本


✔ 1. 修改 PerceptualLoss,使用低層:

PerceptualLoss(layer_index=3)   # relu1_2

或使用 8(relu2_2)


✔ 2. 調整損失權重:

建議:

L1_penalty             = 50–100
Lconst_penalty         = 5
Lperceptual_penalty    = 0.02
GAN                    = 1
Category               = 1

✔ 3. 若你要保留 const_loss,應避免使用太深的 perceptual loss

因為:

  • const_loss(UNet bottleneck feature)
  • perceptual loss(ImageNet VGG low-level feature)

→ 同時存在時,只適合使用 低層 VGG(1_2 或 2_2)


✔ 4. 修正 PerceptualLoss forward 中移動 mean/std:

改成 init 中就放進 device:

self.register_buffer('mean', mean.to(device))
self.register_buffer('std', std.to(device))

✔ 5. 更穩定的 G-loss 配比:

G_loss = 
    GAN_loss * 1.0 +
    L1_loss * 50 +
    const_loss * 5 +
    perceptual_loss * 0.02 +
    category_loss * 1

🎁 如果你願意

我可以幫你提供:

✔ 完整修正後的 PerceptualLoss class

(支援多層特徵 + 字體 friendly)

✔ 完整修改過的 Zi2ZiModel(正確 loss flow)

✔ 統一的損失權重建議

✔ 與 return_feat embedding 不衝突的 perceptual loss 設計


好的 — 我已把你要求的修正版整合好了:一個更健壯的 PerceptualLoss(多層、低層預設、device-safe),以及修正過的 Zi2ZiModel 關鍵部分(初始化、forward、optimize_parameters)。我同時修正了先前我指出的 bug/不良做法,並把常見的安全處理(feature pooling、權重建議、category loss 對稱)都放進去。你可以直接把下列程式碼片段貼回你的專案(替換對應 class / method)。

主要改動點(摘要)

  • PerceptualLoss:預設用 VGG 低階層 [3, 8](relu1_2, relu2_2)、會在初始化時把模型及 mean/std 移到 device、回傳多層 feature 的加權 L1。
  • Zi2ZiModel:
    • 修正重複/錯誤屬性賦值(例如 fake_binary_loss 重複);
    • 將 perceptual module 在 setup 時建立並放到正確 device;
    • 在 forward() 計算 const_loss 時對 featadaptive_avg_pool2d(..., (1,1)) 轉成向量,比較穩定(避免 spatial mismatch);
    • 調整 category loss 在 D、G 中的對稱處理;
    • 建議并示範合理預設權重(你可按需微調)。

1) PerceptualLoss(整個 class)

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, VGG16_Weights

class PerceptualLoss(nn.Module):
    """
    Perceptual loss using VGG features.
    - layers: list of feature indices to extract (indices in torchvision vgg.features)
      defaults to [3,8] -> relu1_2, relu2_2 (good for line/texture tasks like fonts)
    - weights: list or scalar weight per layer (same length as layers) or single scalar broadcasted
    - device: place the vgg and buffers on this device at init
    """
    def __init__(self, layers=(3, 8), weights=1.0, device=None):
        super().__init__()
        # Accept tuple/list or single int
        if isinstance(layers, int):
            layers = (layers,)
        self.layers = tuple(layers)

        # weights handling
        if isinstance(weights, (int, float)):
            self.layer_weights = [float(weights)] * len(self.layers)
        else:
            assert len(weights) == len(self.layers)
            self.layer_weights = [float(w) for w in weights]

        # Load pretrained VGG features
        vgg = vgg16(weights=VGG16_Weights.DEFAULT)
        self.max_idx = max(self.layers)
        # we'll iterate features up to max_idx and collect outputs at indices in self.layers
        self.vgg_features = vgg.features[: self.max_idx + 1].eval()

        # freeze params
        for p in self.vgg_features.parameters():
            p.requires_grad = False

        # device placement
        if device is None:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.device = device
        self.vgg_features = self.vgg_features.to(self.device)

        # ImageNet mean/std (buffers)
        mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
        std  = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
        self.register_buffer("mean", mean.to(self.device))
        self.register_buffer("std", std.to(self.device))

        self.criterion = nn.L1Loss()

    def _extract_features(self, x):
        """
        run through vgg_features and collect outputs at indicated indices
        returns list of tensors for selected layers
        """
        features = []
        cur = x
        for idx, layer in enumerate(self.vgg_features):
            cur = layer(cur)
            if idx in self.layers:
                # clone to avoid accidental in-place changes
                features.append(cur)
        return features

    def forward(self, input_img, target_img):
        """
        input_img, target_img: expected in range [-1, 1] (GAN convention). Channels can be 1 or 3.
        Returns weighted sum of L1 distances between selected VGG feature maps.
        """
        # move inputs to device
        input_img = input_img.to(self.device)
        target_img = target_img.to(self.device)

        # convert [-1,1] -> [0,1]
        input_img = (input_img + 1.0) * 0.5
        target_img = (target_img + 1.0) * 0.5

        # if grayscale -> replicate to 3 channels
        if input_img.shape[1] == 1:
            input_img = input_img.repeat(1, 3, 1, 1)
        if target_img.shape[1] == 1:
            target_img = target_img.repeat(1, 3, 1, 1)

        # normalize with ImageNet mean/std (buffers already on device)
        input_img = (input_img - self.mean) / self.std
        target_img = (target_img - self.mean) / self.std

        # Extract features
        inp_feats = self._extract_features(input_img)
        tgt_feats = self._extract_features(target_img)
        assert len(inp_feats) == len(self.layer_weights)

        loss = 0.0
        for f_inp, f_tgt, w in zip(inp_feats, tgt_feats, self.layer_weights):
            loss = loss + w * self.criterion(f_inp, f_tgt)

        return loss

2) Zi2ZiModel(關鍵段落:__init__ / setup() / forward() / optimize_parameters()

把下面整段替換到你的 Zi2ZiModel 類(或以 patch 合併關鍵修改),它包含了上述修正與更安全的流程。

import torch
import torch.nn as nn
import torch.nn.functional as F
import functools

class Zi2ZiModel:
    def __init__(self, input_nc=1, embedding_num=40, embedding_dim=128,
                 ngf=64, ndf=64,
                 Lconst_penalty=5.0, Lcategory_penalty=1.0, L1_penalty=100.0, Lperceptual_penalty=0.02,
                 schedule=10, lr=2e-4, gpu_ids=None, save_dir='.', is_training=True,
                 image_size=256, self_attention=False, d_spectral_norm=False, norm_type="instance"):
        # basic attrs
        self.gpu_ids = gpu_ids
        self.device = torch.device("cuda" if self.gpu_ids and torch.cuda.is_available() else "cpu")

        self.use_dropout = bool(is_training)
        # loss weights
        self.Lconst_penalty = float(Lconst_penalty)
        self.Lcategory_penalty = float(Lcategory_penalty)
        self.L1_penalty = float(L1_penalty)
        self.Lperceptual_penalty = float(Lperceptual_penalty)

        self.schedule = schedule
        self.save_dir = save_dir

        self.input_nc = input_nc
        self.embedding_dim = embedding_dim
        self.embedding_num = embedding_num
        self.ngf = ngf
        self.ndf = ndf
        self.lr = lr
        self.is_training = is_training
        self.image_size = image_size
        self.self_attention = self_attention
        self.d_spectral_norm = d_spectral_norm
        self.norm_type = norm_type

        # placeholders set in setup
        self.netG = None
        self.netD = None

        self.setup()

    def setup(self):
        # choose norm
        if self.norm_type == 'batch':
            norm_layer = nn.BatchNorm2d
        elif self.norm_type == 'instance':
            norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
        else:
            raise NotImplementedError('normalization layer [%s] is not found' % self.norm_type)

        # build nets (assumes UNetGenerator and Discriminator are defined and imported)
        num_downs = 8 if self.image_size != 384 else 7

        self.netG = UNetGenerator(
            input_nc=self.input_nc,
            output_nc=self.input_nc,
            embedding_num=self.embedding_num,
            embedding_dim=self.embedding_dim,
            ngf=self.ngf,
            norm_layer=norm_layer,
            use_dropout=self.use_dropout,
            num_downs=num_downs,
            self_attention=self.self_attention
        ).to(self.device)

        self.netD = Discriminator(
            input_nc=2 * self.input_nc,
            embedding_num=self.embedding_num,
            ndf=self.ndf,
            norm_layer=norm_layer,
            image_size=self.image_size,
            use_spectral_norm=self.d_spectral_norm
        ).to(self.device)

        init_net(self.netG, gpu_ids=self.gpu_ids)
        init_net(self.netD, gpu_ids=self.gpu_ids)

        # optimizers (lower lr recommended from 1e-3 -> 2e-4)
        self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=self.lr, betas=(0.5, 0.999))
        self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=self.lr, betas=(0.5, 0.999))

        # losses
        self.category_loss = CategoryLoss(self.embedding_num).to(self.device)
        self.real_binary_loss = BinaryLoss(True).to(self.device)
        self.fake_binary_loss = BinaryLoss(False).to(self.device)
        self.l1_loss = nn.L1Loss().to(self.device)
        # perceptual loss (use low-level default layers [3,8])
        self.perceptual_loss = PerceptualLoss(layers=(3,8), weights=1.0, device=self.device)
        self.mse = nn.MSELoss().to(self.device)

        # training mode
        if self.is_training:
            self.netD.train()
            self.netG.train()
        else:
            self.netD.eval()
            self.netG.eval()


    def set_input(self, data):
        self.model_input_data = data
        self.labels = data['label'].to(self.device)
        self.real_A = data['A'].to(self.device)
        self.real_B = data['B'].to(self.device)

    def forward(self):
        """
        Do single forward pass:
        - produce fake_B, fake_B_emb from netG(A)
        - produce real_B_emb from netG(real_B)
        - compute l1, const, perceptual (perceptual only computed if Lperceptual_penalty > 0)
        Note: const loss uses adaptive avg pooling to convert feature maps to vectors
        """
        # produce fake and fake embedding in one forward
        self.fake_B, fake_B_emb = self.netG(self.real_A, self.labels, return_feat=True)
        # produce real embedding (one forward on real_B)
        _, real_B_emb = self.netG(self.real_B, self.labels, return_feat=True)

        # L1 reconstruction (pixel)
        self.loss_l1 = self.l1_loss(self.fake_B, self.real_B)

        # const loss: pool to vectors to avoid spatial mismatch
        # adaptive avg pool -> (B, C, 1, 1) -> flatten
        if fake_B_emb is None or real_B_emb is None:
            # fallback (should not happen if netG return_feat True)
            self.loss_const = torch.tensor(0.0, device=self.device)
        else:
            f_vec = F.adaptive_avg_pool2d(fake_B_emb, (1,1)).view(fake_B_emb.size(0), -1)
            r_vec = F.adaptive_avg_pool2d(real_B_emb, (1,1)).view(real_B_emb.size(0), -1)
            self.loss_const = self.mse(f_vec, r_vec)  # MSE for embedding constancy

        # perceptual loss (on pixels) using low-level VGG features
        if self.Lperceptual_penalty > 0.0:
            self.loss_perceptual = self.perceptual_loss(self.fake_B, self.real_B)
        else:
            self.loss_perceptual = torch.tensor(0.0, device=self.device)

        # store for optimize step
        self.fake_B_emb = fake_B_emb
        self.real_B_emb = real_B_emb
        self.fake_B = self.fake_B  # already set above
        return

    def optimize_parameters(self):
        # forward first
        self.forward()

        real_A = self.real_A
        real_B = self.real_B
        fake_B = self.fake_B
        labels = self.labels

        fake_AB = torch.cat([real_A, fake_B], dim=1)
        real_AB = torch.cat([real_A, real_B], dim=1)

        # ---------- Update D ----------
        self.set_requires_grad(self.netD, True)
        self.optimizer_D.zero_grad(set_to_none=True)

        pred_fake_d, fake_category_logits_d = self.netD(fake_AB.detach())
        pred_real, real_category_logits = self.netD(real_AB)

        loss_D_real = self.real_binary_loss(pred_real)
        loss_D_fake = self.fake_binary_loss(pred_fake_d)

        # category loss symmetric (no extra half-scaling)
        category_loss_real = self.category_loss(real_category_logits, labels)
        category_loss_fake = self.category_loss(fake_category_logits_d, labels)
        self.category_loss_D = (category_loss_real + category_loss_fake) * self.Lcategory_penalty

        self.d_loss = 0.5 * (loss_D_real + loss_D_fake) + self.category_loss_D
        self.d_loss.backward()
        self.optimizer_D.step()

        # ---------- Update G ----------
        self.set_requires_grad(self.netD, False)
        self.optimizer_G.zero_grad(set_to_none=True)

        pred_fake, fake_category_logits = self.netD(fake_AB)  # evaluation of fake with current D
        # GAN loss for G (non-saturating (or use BinaryLoss with True target) )
        self.loss_G_GAN = self.real_binary_loss(pred_fake)

        fake_category_loss_G = self.category_loss(fake_category_logits, labels) * self.Lcategory_penalty

        # compose total G loss with suggested scaling
        self.g_loss = (
            self.loss_G_GAN * 1.0 +
            self.loss_l1 * (self.L1_penalty) +
            self.loss_const * (self.Lconst_penalty) +
            self.loss_perceptual * (self.Lperceptual_penalty) +
            fake_category_loss_G
        )

        self.g_loss.backward()
        # optional grad clipping (uncomment to use)
        # torch.nn.utils.clip_grad_norm_(self.netG.parameters(), 1.0)
        self.optimizer_G.step()

        # Return logging scalars (as floats)
        return {
            "d_loss": self.d_loss.detach().item(),
            "g_loss": self.g_loss.detach().item(),
            "loss_l1": self.loss_l1.detach().item(),
            "loss_const": self.loss_const.detach().item() if isinstance(self.loss_const, torch.Tensor) else float(self.loss_const),
            "loss_perceptual": self.loss_perceptual.detach().item() if isinstance(self.loss_perceptual, torch.Tensor) else 0.0,
            "loss_G_GAN": self.loss_G_GAN.detach().item()
        }

    def set_requires_grad(self, nets, requires_grad=False):
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad

3) 建議的超參數(起手)

  • lr = 2e-4(比 1e-3 更穩定)
  • L1_penalty = 100(如果你確實需要 pixel fidelity,否則先 50)
  • Lconst_penalty = 5.0(避免把 g_loss 全部拉高)
  • Lperceptual_penalty = 0.01 ~ 0.05(若用低層 VGG)
  • Lcategory_penalty = 1.0

實驗時先一次只改一個(例如先關掉 perceptual,看基線;再打開 perceptual 並用 0.02)。


4) 為什麼我把 embedding const loss 用 mse + adaptive_avg_pool2d

  • 你的 deepest_feat & second_feat 可能在空間大小不同(你之前遇到 concat error)。把它們 adaptive_avg_pool2d(...,(1,1)) 會得到穩定 (B, C, 1, 1),然後 flatten 為向量,比較穩定且不會因 H/W mismatch 發生錯誤。
  • MSE 對 embedding 向量比較合理(L1 也可),但 MSE 更常用於特徵相似性(你可視需求改回 L1)。

5) 其他小改動建議(可選)

  • 如果 D 過強,給 D 加 spectral_norm(你已支援 d_spectral_norm),或把 D 更新次數 vs G 的更新次數調整(例如每次更新 G 前更新 D 1 次或 2 次)。
  • 若 perceptual loss 計算太慢,可只針對每 N 個 step 計算一次(不過不推薦作為常態,僅 debug 時用)。
  • 若你要保留高層 VGG(relu3_3)做補充,請把權重設極小(如 0.001)且先確認輸出是否改善。
  • 在訓練初期(前幾 epoch)把 L1 與 const loss 權重稍微降低,先讓 GAN 學會 high-level distribution,再慢慢把像素誤差提高,有時對 quality 有幫助。

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *