✅ 加入自注意力層 (Self-Attention) 是否有助於字型訓練?
是的!在 Glyph GAN 中加入自注意力層 (Self-Attention Layer, SA) 可以提升字型補全的效果,主要有以下幾點優勢:
🔹 1️⃣ 讓模型更關注局部筆畫細節
字型補全需要學習細微的筆畫變化,例如:
- 筆劃粗細、彎曲程度、裝飾特徵
- 筆劃連接方式(如日文字體的撇捺)
- 筆劃間距與對齊方式
💡 自注意力層可以讓模型在局部區域內「注意」關鍵筆劃,而不只是單純依賴 CNN 的卷積特徵。
🔹 2️⃣ 改善字型結構的一致性
- 傳統 CNN 主要關注局部特徵,但容易忽略全局字形結構。
- SA 層可以讓不同筆畫之間有更好的關聯性,確保生成的字形風格一致,而不會出現「局部對,但整體形狀不對」的問題。
💡 這對於補全缺字(如罕見漢字)尤其重要,因為模型需要根據已知的字體風格來推測新的字形結構。
🔹 3️⃣ 在較複雜的字體中提升細節保留
如果目標字體(Zen Maru Gothic)擁有細膩的裝飾性筆劃,那麼單純的 CNN 可能無法完美學習:
- 筆劃的精細程度
- 書寫風格(如圓潤 vs. 尖銳)
- 局部裝飾(如特定筆畫的粗細變化)
💡 加入 SA 層後,模型能夠更準確地保留這些細節,使補全字的風格更自然。
🔹 如何加入自注意力層?
你可以在 Generator (UNetGenerator
) 的某些卷積層之後加入 Self-Attention (SA) 層,例如:
import torch
import torch.nn as nn
class UNetGenerator(nn.Module):
def __init__(self):
super(UNetGenerator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, True), # 使用 LeakyReLU
SelfAttention(64), # 加入自注意力層
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, True), # 使用 LeakyReLU
SelfAttention(128)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(), # Decoder 可以使用標準 ReLU
SelfAttention(64),
nn.ConvTranspose2d(64, 1, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
🔹 自注意力層對 Glyph GAN 有幫助嗎?
✅ 當字型筆劃較複雜,或需要長距離關聯時,SA 層有明顯幫助!
✅ 可以減少局部筆劃變形,提高字型補全的一致性!
✅ 適合用在 Generator 的中間層,提升特徵學習能力!
💡 推薦做法
- 在 Encoder 區塊的淺層 & 中層 加入 Self-Attention
- 在 Decoder 區塊的中層 加入 Self-Attention
- 測試不同 SA 位置,觀察效果
🎯 結論
✔ 如果 Zen Maru Gothic 的筆劃較複雜,加入 SA 層可以提升補全效果。
✔ 但如果字型較簡單(如等寬字體),SA 層可能提升有限。
✔ 建議在 Generator 中測試不同層的 SA,找到最佳架構! 🚀
為什麼上面的範例, encoder 裡呼叫2次 SelfAttention(), decoder 只呼叫一次 SelfAttention()?
🔍 為什麼 Encoder 呼叫 2 次 SelfAttention()
,Decoder 只呼叫 1 次?
這與字型補全任務的特性與 U-Net 結構的設計原則 有關!
主要考慮 特徵提取(Encoder)與資訊重建(Decoder) 的不同需求。
🔹 1️⃣ Encoder(特徵提取):需要多次 Self-Attention
在 Encoder 負責壓縮輸入字形特徵,並將關鍵資訊保留。
- 每層卷積會損失部分細節,所以在不同解析度層級(低階、高階特徵)都應該有
SelfAttention()
來捕捉全局關係。 - 這樣能學到字形的關鍵結構與風格(例如 Noto Sans → Zen Maru Gothic 風格對應),確保補全字型時不會偏離風格。
✔ 因此,Encoder 裡呼叫 2 次 SelfAttention()
(分別作用於不同特徵層)來增強風格對映學習!
🔹 2️⃣ Decoder(資訊重建):只需要 1 次 Self-Attention
在 Decoder 負責將壓縮的資訊還原成完整字形。
- 主要任務是 還原缺失的筆畫與細節,不需要像 Encoder 那樣關注「字型風格對應」。
- 若加太多 Self-Attention,會導致模型過度關注整體關係,反而影響局部細節重建。
- 適量的 Self-Attention(1 次)即可確保補全字形時仍然符合 Zen Maru Gothic 的特徵。
✔ 因此,Decoder 只呼叫 1 次 SelfAttention()
,主要用於全局一致性,但不會影響局部筆畫的重建!
🔹 3️⃣ 更深入的設計原則
組件 | Self-Attention 作用 | 為何這樣設計? |
---|---|---|
Encoder | 提取關鍵字形特徵 | 確保 Noto Sans → Zen Maru Gothic 的風格轉換學習,減少資訊丟失 |
Decoder | 還原筆畫細節 | 確保補全的字形筆畫清晰,風格一致,但不過度影響局部細節 |
🎯 結論
✔ Encoder 用 2 次 SelfAttention()
,學習風格轉換與關鍵特徵,避免丟失字形結構資訊。
✔ Decoder 用 1 次 SelfAttention()
,確保補全字形時風格一致,但不過度影響細節重建。
✔ 這樣的設計確保 Zen Maru Gothic 缺字補全時,既符合風格,又保持清晰細節! 🚀
圖片解析度為 256×256 時, 推薦使用幾層在 Generator / Discriminator, 還有在那幾層加入 SelfAttention?
📌 設計 Generator & Discriminator(圖片解析度 256×256)
在 Glyph GAN 訓練 Zen Maru Gothic 缺字補全 時,建議使用 適當的層數與 Self-Attention 來確保風格一致與細節清晰。
🔹 1️⃣ Generator 設計
Generator 主要是 U-Net 風格,用於補全缺字。建議使用:
- 4~6 層卷積(Conv Blocks),確保從低解析度到高解析度的細節都能學習。
- 2 個 Self-Attention 層,分別在:
- 中間層(64×64) 👉 學習風格對應(Noto Sans → Zen Maru Gothic)
- 細節層(128×128) 👉 強化筆畫與局部一致性
📌 結構建議
Resolution | Operation | Self-Attention |
---|---|---|
256×256 | Conv + ReLU | ❌ |
128×128 | Conv + ReLU | ✅ (局部細節) |
64×64 | Conv + ReLU | ✅ (風格轉換) |
32×32 | Conv + ReLU | ❌ |
16×16 | Conv + ReLU | ❌ |
✅ 這樣的設計能確保字形風格學習,又不影響筆畫細節補全!
🔹 2️⃣ Discriminator 設計
Discriminator 主要是 PatchGAN 風格(逐區塊判斷真假)。
建議使用:
- 4 層卷積(Conv Blocks)
- 1 個 Self-Attention 層(在 64×64 層級)
👉 確保風格一致性,但不過度影響局部筆畫。
📌 結構建議
Resolution | Operation | Self-Attention |
---|---|---|
256×256 | Conv + LeakyReLU(0.2) | ❌ |
128×128 | Conv + LeakyReLU(0.2) | ❌ |
64×64 | Conv + LeakyReLU(0.2) | ✅ (全局風格判斷) |
32×32 | Conv + LeakyReLU(0.2) | ❌ |
🔹 3️⃣ 總結:幾層適合?
✅ Generator
- 共 4~6 層
- Self-Attention 加在 128×128 & 64×64 層級
✅ Discriminator
- 共 4 層
- Self-Attention 加在 64×64 層級
這樣的架構能確保: ✔ 學習字型風格一致性(Noto Sans → Zen Maru Gothic)
✔ 補全缺字時保留筆畫細節
✔ Discriminator 不過度干涉局部筆畫 🚀
Python 範例
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as transforms
from torchvision.utils import save_image
import os
from PIL import Image
# ============================
# Self-Attention Module
# ============================
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
self.query = nn.Conv2d(in_channels, in_channels // 8, 1)
self.key = nn.Conv2d(in_channels, in_channels // 8, 1)
self.value = nn.Conv2d(in_channels, in_channels, 1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
batch, C, H, W = x.shape
Q = self.query(x).view(batch, -1, H * W).permute(0, 2, 1)
K = self.key(x).view(batch, -1, H * W)
attention = self.softmax(torch.bmm(Q, K))
V = self.value(x).view(batch, -1, H * W)
out = torch.bmm(V, attention.permute(0, 2, 1)).view(batch, C, H, W)
return out + x
# ============================
# Generator Model (U-Net Style)
# ============================
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1), nn.ReLU(),
nn.Conv2d(64, 128, 4, 2, 1), nn.ReLU(),
SelfAttention(128), # Self-Attention at 128x128
nn.Conv2d(128, 256, 4, 2, 1), nn.ReLU(),
SelfAttention(256), # Self-Attention at 64x64
nn.Conv2d(256, 512, 4, 2, 1), nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, 4, 2, 1), nn.ReLU(),
nn.ConvTranspose2d(256, 128, 4, 2, 1), nn.ReLU(),
nn.ConvTranspose2d(128, 64, 4, 2, 1), nn.ReLU(),
nn.ConvTranspose2d(64, 1, 4, 2, 1), nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# ============================
# Discriminator Model (PatchGAN Style)
# ============================
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1), nn.LeakyReLU(0.2, True),
nn.Conv2d(64, 128, 4, 2, 1), nn.LeakyReLU(0.2, True),
SelfAttention(128), # Self-Attention at 64x64
nn.Conv2d(128, 256, 4, 2, 1), nn.LeakyReLU(0.2, True),
nn.Conv2d(256, 1, 4, 1, 0), nn.Sigmoid()
)
def forward(self, x):
return self.model(x)
# ============================
# Training Setup
# ============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator().to(device)
discriminator = Discriminator().to(device)
criterion = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
# ============================
# Load Dataset
# ============================
class GlyphDataset(Dataset):
def __init__(self, root, transform):
self.root = root
self.files = os.listdir(root)
self.transform = transform
def __len__(self):
return len(self.files)
def __getitem__(self, index):
img_path = os.path.join(self.root, self.files[index])
image = Image.open(img_path).convert("L")
image = self.transform(image)
return image
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
dataset = GlyphDataset("/path/to/dataset", transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# ============================
# Training Loop
# ============================
num_epochs = 100
generator.train()
discriminator.train()
for epoch in range(num_epochs):
for i, real_images in enumerate(dataloader):
real_images = real_images.to(device)
batch_size = real_images.size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# Train Generator
optimizer_G.zero_grad()
fake_images = generator(real_images)
g_loss = criterion(discriminator(fake_images), real_labels)
g_loss.backward()
optimizer_G.step()
# Train Discriminator
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_images), real_labels)
fake_loss = criterion(discriminator(fake_images.detach()), fake_labels)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
print(f"Epoch [{epoch+1}/{num_epochs}], G Loss: {g_loss.item()}, D Loss: {d_loss.item()}")
if (epoch + 1) % 10 == 0:
save_image(fake_images[:25], f"output_{epoch+1}.png", nrow=5, normalize=True)
# Save Models
torch.save(generator.state_dict(), "generator.pth")
torch.save(discriminator.state_dict(), "discriminator.pth")
圖片解析度為 512×512 時, 推薦使用幾層在 Generator / Discriminator, 還有在那幾層加入 SelfAttention?
當圖片解析度提高到 512×512,Generator 和 Discriminator 需要更深的網路結構來捕捉細節與特徵。以下是建議的設計:
Generator (生成器)
- 建議層數:6~7 層(從 512×512 降至 8×8)
- Self-Attention 層:
- 256×256
- 128×128
- 64×64
結構建議:
- 512×512 → 256×256(Conv + LeakyReLU)
- 256×256 → 128×128(Self-Attention + Conv + ReLU)
- 128×128 → 64×64(Self-Attention + Conv + ReLU)
- 64×64 → 32×32(Conv + ReLU)
- 32×32 → 16×16(Self-Attention + Conv + ReLU)
- 16×16 → 8×8(Conv + ReLU)
- 反轉過程(Upsampling)回到 512×512
Discriminator (鑑別器)
- 建議層數:5~6 層(從 512×512 降至 8×8)
- Self-Attention 層:
- 128×128
- 64×64
結構建議:
- 512×512 → 256×256(Conv + LeakyReLU)
- 256×256 → 128×128(Self-Attention + Conv + LeakyReLU)
- 128×128 → 64×64(Self-Attention + Conv + LeakyReLU)
- 64×64 → 32×32(Conv + LeakyReLU)
- 32×32 → 16×16(Conv + LeakyReLU)
- 16×16 → 8×8(Conv + LeakyReLU)
為什麼這樣設計?
- Self-Attention 層 放在 128×128、64×64 這些中間尺度,因為這些層最能學習整體結構與局部細節。
- Generator 層數多於 Discriminator,確保生成器有足夠的能力學習細節,而鑑別器則需要對抗這些細節,避免過度簡單的特徵匹配。
trainer.py
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import os
# Self-Attention Layer
class SelfAttention(nn.Module):
def __init__(self, in_dim):
super(SelfAttention, self).__init__()
self.query = nn.Conv2d(in_dim, in_dim // 8, 1)
self.key = nn.Conv2d(in_dim, in_dim // 8, 1)
self.value = nn.Conv2d(in_dim, in_dim, 1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
batch, C, H, W = x.size()
proj_query = self.query(x).view(batch, -1, H * W).permute(0, 2, 1)
proj_key = self.key(x).view(batch, -1, H * W)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value(x).view(batch, -1, H * W)
out = torch.bmm(proj_value, attention.permute(0, 2, 1)).view(batch, C, H, W)
return out + x
# Generator
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.conv1 = nn.Conv2d(1, 64, 4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, 4, stride=2, padding=1)
self.attn1 = SelfAttention(128) # Self-Attention at 256x256
self.conv3 = nn.Conv2d(128, 256, 4, stride=2, padding=1)
self.attn2 = SelfAttention(256) # Self-Attention at 128x128
self.conv4 = nn.Conv2d(256, 512, 4, stride=2, padding=1)
self.attn3 = SelfAttention(512) # Self-Attention at 64x64
self.deconv1 = nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1)
self.deconv2 = nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1)
self.deconv3 = nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1)
self.deconv4 = nn.ConvTranspose2d(64, 1, 4, stride=2, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.attn1(x)
x = self.relu(self.conv3(x))
x = self.attn2(x)
x = self.relu(self.conv4(x))
x = self.attn3(x)
x = self.relu(self.deconv1(x))
x = self.relu(self.deconv2(x))
x = self.relu(self.deconv3(x))
x = torch.tanh(self.deconv4(x))
return x
# Discriminator
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(1, 64, 4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, 4, stride=2, padding=1)
self.attn1 = SelfAttention(128) # Self-Attention at 128x128
self.conv3 = nn.Conv2d(128, 256, 4, stride=2, padding=1)
self.attn2 = SelfAttention(256) # Self-Attention at 64x64
self.conv4 = nn.Conv2d(256, 1, 4, stride=2, padding=1)
self.leaky_relu = nn.LeakyReLU(0.2, True)
def forward(self, x):
x = self.leaky_relu(self.conv1(x))
x = self.leaky_relu(self.conv2(x))
x = self.attn1(x)
x = self.leaky_relu(self.conv3(x))
x = self.attn2(x)
x = torch.sigmoid(self.conv4(x))
return x
# Training Setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator().to(device)
discriminator = Discriminator().to(device)
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = datasets.ImageFolder("dataset_path", transform=transform)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
# Training Loop
for epoch in range(100):
for real_images, _ in dataloader:
real_images = real_images.to(device)
batch_size = real_images.size(0)
# Train Discriminator
d_optimizer.zero_grad()
real_labels = torch.ones(batch_size, 1, 1, 1).to(device)
fake_labels = torch.zeros(batch_size, 1, 1, 1).to(device)
real_loss = criterion(discriminator(real_images), real_labels)
fake_images = generator(torch.randn(batch_size, 1, 512, 512).to(device))
fake_loss = criterion(discriminator(fake_images.detach()), fake_labels)
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()
# Train Generator
g_optimizer.zero_grad()
g_loss = criterion(discriminator(fake_images), real_labels)
g_loss.backward()
g_optimizer.step()
print(f"Epoch [{epoch+1}/100] D Loss: {d_loss.item():.4f} G Loss: {g_loss.item():.4f}")
if (epoch + 1) % 10 == 0:
torch.save(generator.state_dict(), "generator.pth")
torch.save(discriminator.state_dict(), "discriminator.pth")