很好,這個策略「凍結 UNet 的 encoder,只微調 decoder(上採樣模組)」,是遷移學習中非常常見的技巧,尤其適合你現在這種「替換上採樣模組」的場景。
✅ 為什麼這樣做有效?
- Encoder 學到的特徵提取能力已經不錯,不需要重新訓練。
- Decoder 是新加入(例如 PixelShuffle 版),需要調整來適應。
- 節省訓練時間,穩定訓練過程。
🧩 假設 UNet 架構如下(簡化版):
class UNet(nn.Module):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(),
)
self.bottleneck = nn.Sequential(
nn.Conv2d(128, 256, 3, padding=1),
nn.ReLU(),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.ReLU(),
)
self.output_layer = nn.Conv2d(64, 1, 1)
def forward(self, x):
x = self.encoder(x)
x = self.bottleneck(x)
x = self.decoder(x)
return self.output_layer(x)
🔧 操作細節:凍結 encoder & bottleneck,只訓練 decoder
✅ 方法 1:設定 requires_grad = False
for param in model.encoder.parameters():
param.requires_grad = False
for param in model.bottleneck.parameters():
param.requires_grad = False
你也可以寫一個 helper:
def freeze_module(module):
for param in module.parameters():
param.requires_grad = False
然後:
freeze_module(model.encoder)
freeze_module(model.bottleneck)
🔎 確認只有 decoder 被訓練:
trainable_params = [name for name, param in model.named_parameters() if param.requires_grad]
print("Trainable parameters:", trainable_params)
你應該只會看到類似:
Trainable parameters: ['decoder.0.weight', 'decoder.0.bias', 'decoder.2.weight', 'decoder.2.bias', 'output_layer.weight', 'output_layer.bias']
🧪 optimizer 也只需要傳 trainable params:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
💡 額外提示:
- 如果你要微調的是換了 PixelShuffle 版本的 decoder,務必確保 decoder 的 channel size 接得上 encoder 的輸出。
- 可以加個 assert 驗證尺寸匹配。
- 如果 encoder/bottleneck 層 batchnorm 存在,建議設為 eval 模式避免 batch statistics 更新:
model.encoder.eval()
model.bottleneck.eval()
如果你願意,我可以幫你把這一段凍結 & 切換上採樣寫成你現有 UNet 架構可插拔的形式,例如:
UNet(upsample_mode="pixelshuffle", freeze_encoder=True)
要嗎?我可以直接幫你整合。
你這個修改方向非常清楚,而且設計得很好!👍
下面我幫你整理幾個建議與修正,以增強你的 UNetSkipConnectionBlock
模組實用性與穩定性:
✅ 建議與修改項目:
1. use_bias
建議改名
你定義了 use_bias=True
,但這個名稱會讓人誤解是應用在整個 block 上,實際上只用在 Conv2d
,建議更具體命名:
conv_bias: bool = True # or conv2d_bias
2. PixelShuffle 模式需注意通道數倍數
PixelShuffle 需要 in_channels = out_channels * upscale_factor²
,你這段已經考慮得很好。不過:
- 建議加入錯誤提示(你有 warning,但也許 raise 會更安全)
if in_channels % (scale_factor ** 2) != 0:
raise ValueError(f"in_channels ({in_channels}) must be divisible by scale_factor² ({scale_factor ** 2}) for pixelshuffle")
3. 可選擇是否凍結 Upsample 模組
既然你想要能夠「凍結」上採樣模組,可以在 __init__
加一個參數來控制:
freeze_upsample: bool = False
然後在 setup_upsample
後面加:
if self.freeze_upsample:
for param in self.upsample.parameters():
param.requires_grad = False
4. 改成類別儲存 Upsample 模式名稱
目前 upsample_mode
是字串,也可以考慮用 Enum
或 Literal
顯式定義型別(較安全):
from typing import Literal
upsample_mode: Literal["conv", "upsample", "pixelshuffle"] = "upsample"
5. init 上建議加入印出確認訊息(debug 用)
方便訓練時確定模式是否正確:
print(f"[UNetBlock] upsample_mode={self.upsample_mode}, scale_factor={scale_factor}, freeze={self.freeze_upsample}")
✅ 總結改進後的 __init__
樣板參考:
def __init__(
self,
in_channels: int,
out_channels: int,
upsample_mode: Literal["conv", "upsample", "pixelshuffle"] = "upsample",
scale_factor: int = 2,
conv_bias: bool = True,
freeze_upsample: bool = False,
):
super().__init__()
self.upsample_mode = upsample_mode
self.scale_factor = scale_factor
self.freeze_upsample = freeze_upsample
self.upsample = self.setup_upsample(in_channels, out_channels, scale_factor, conv_bias)
if self.freeze_upsample:
for param in self.upsample.parameters():
param.requires_grad = False
print(f"[UNetBlock] upsample_mode={upsample_mode}, scale={scale_factor}, freeze={freeze_upsample}")
需要我幫你整合成一個完整的 UNetSkipConnectionBlock
類別範例嗎?或者你也可以分享完整類別,我可以幫你一起補上這些建議。
你說得完全對,目標是要切換上採樣方式,所以應該是要**凍結 encoder(下採樣路徑)**的訓練參數,而不是凍結上採樣模組!
剛才的「凍結上採樣」的方向是錯的,感謝你指出!我們現在來釐清整個設計:
🎯 目標:支援上採樣方式的「切換 + encoder 凍結」
✅ 你要實現的效果是:
- 在訓練時切換
upsample_mode
(例如從 conv ➜ pixelshuffle) - 但**不改動 encoder 部分(下採樣與中間層)**的參數
- 因此應該要 凍結 encoder 區塊的參數(不讓其梯度更新)
✅ 正確的實作方向應該是:
🔧 1. Encoder 模組中加入凍結參數
class UNetSkipConnectionBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
...,
freeze_encoder: bool = False,
...
):
super().__init__()
self.freeze_encoder = freeze_encoder
# Encoder 路徑部分
self.encoder = nn.Sequential(
nn.Conv2d(...),
nn.ReLU(),
...
)
# Decoder 路徑部分
self.upsample = self.setup_upsample(...)
# 若指定凍結 encoder,停用參數更新
if self.freeze_encoder:
for param in self.encoder.parameters():
param.requires_grad = False
🧩 2. Decoder(upsample)保留可訓練
也就是 僅 freeze encoder 的參數,讓 decoder(例如不同上採樣方法)可以自由學習。
🧪 3. 切換 upsample_mode
做法(可選)
如果你想在訓練中動態切換 upsample_mode
(例如做 ablation),可以設計一個 setter 函式:
def switch_upsample_mode(self, mode: str):
self.upsample_mode = mode
self.upsample = self.setup_upsample(...)
🔁 4. 如果你有整個 UNet 類別(非單一 block),建議在 encoder 與 decoder 間明確分開設計:
self.encoder_blocks = nn.ModuleList([...])
self.decoder_blocks = nn.ModuleList([...])
# 凍結 encoder 所有參數
if freeze_encoder:
for block in self.encoder_blocks:
for param in block.parameters():
param.requires_grad = False
✅ 結論
項目 | 正確處理方向 |
---|---|
需要凍結的部分 | encoder(下採樣與 bottleneck) |
需要允許訓練的部分 | decoder(尤其是 upsampling 模組) |
切換 upsample 方式目的 | 比較不同上採樣方式對輸出的影響 |
是否要凍結 decoder | ❌ 不要凍結,否則無法訓練新的 upsampling 結果 |
需要我幫你改寫一版完整 UNet 類別,支援 freeze_encoder
和 switch_upsample_mode()
嗎?
好的!我們來改寫 UNetSkipConnectionBlock
與 UNetGenerator
架構,讓 freeze_encoder()
和 switch_upsample_mode()
也成為「可插拔的功能模組」,透過類別參數注入(plug-in)的形式,未來可以更彈性地擴充不同的凍結/切換策略。
✅ 改寫重點:
- 抽象化功能模組:定義
EncoderFreezer
和UpsampleSwitcher
類別。 - 透過初始化參數注入功能模組:在
UNetGenerator
中注入這些 plug-in 並調用。 - 保持原有功能不變:預設 plug-in 可以為
None
,不會影響現有使用方式。
🔁 改寫後的程式碼
import torch
import torch.nn as nn
# === Plug-in 模組 ===
class EncoderFreezer:
def freeze(self, module):
if isinstance(module, UNetSkipConnectionBlock):
if module.outermost:
for param in module.downconv.parameters():
param.requires_grad = False
if module.downnorm is not None:
for param in module.downnorm.parameters():
param.requires_grad = False
if module.submodule is not None:
self.freeze(module.submodule)
class UpsampleSwitcher:
def __init__(self, upsample_mode='conv'):
self.upsample_mode = upsample_mode
def switch(self, module):
if isinstance(module, UNetSkipConnectionBlock):
module.upsample_mode = self.upsample_mode
module.upsample = module._make_upsample_layer()
if not module.outermost:
module.upconv = nn.Conv2d(module.in_channels, module.out_channels, kernel_size=3, stride=1, padding=1)
module.upnorm = nn.BatchNorm2d(module.out_channels)
if module.submodule is not None:
self.switch(module.submodule)
# === UNet 架構 ===
class UNetSkipConnectionBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
submodule=None,
outermost=False,
innermost=False,
use_dropout=False,
upsample_mode='conv'
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.submodule = submodule
self.outermost = outermost
self.innermost = innermost
self.use_dropout = use_dropout
self.upsample_mode = upsample_mode
self.downconv = nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
self.downnorm = nn.BatchNorm2d(out_channels) if not outermost else None
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5) if use_dropout else None
self.upsample = self._make_upsample_layer()
self.upconv = nn.Conv2d(out_channels * 2, in_channels, kernel_size=3, stride=1, padding=1) if not outermost else None
self.upnorm = nn.BatchNorm2d(in_channels) if not outermost else None
self.final_layer = nn.Conv2d(out_channels * 2, in_channels, kernel_size=1) if outermost else None
def _make_upsample_layer(self):
if self.upsample_mode == 'conv':
return nn.ConvTranspose2d(self.out_channels, self.out_channels, kernel_size=4, stride=2, padding=1)
elif self.upsample_mode == 'upsample':
return nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv2d(self.out_channels, self.out_channels, kernel_size=3, padding=1)
)
elif self.upsample_mode == 'pixelshuffle':
return nn.Sequential(
nn.Conv2d(self.out_channels, self.out_channels * 4, kernel_size=3, padding=1),
nn.PixelShuffle(2)
)
else:
raise ValueError(f"Unsupported upsample_mode: {self.upsample_mode}")
def forward(self, x):
down = self.downconv(x)
if self.downnorm is not None:
down = self.downnorm(down)
down = self.relu(down)
if self.submodule is not None:
down = self.submodule(down)
if self.dropout is not None:
down = self.dropout(down)
up = self.upsample(down)
if not self.outermost:
up = self.upconv(up)
if self.upnorm is not None:
up = self.upnorm(up)
return torch.cat([x, up], dim=1)
else:
return self.final_layer(torch.cat([x, up], dim=1))
class UNetGenerator(nn.Module):
def __init__(
self,
in_channels,
out_channels,
num_downs,
ngf=64,
use_dropout=False,
upsample_mode='conv',
encoder_freezer=None,
upsample_switcher=None,
):
super().__init__()
# 建立最底層的模組
unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, innermost=True, upsample_mode=upsample_mode)
# 疊加中間層
for _ in range(num_downs - 5):
unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, submodule=unet_block, use_dropout=use_dropout, upsample_mode=upsample_mode)
# 中階層
unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, submodule=unet_block, upsample_mode=upsample_mode)
unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, submodule=unet_block, upsample_mode=upsample_mode)
unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, submodule=unet_block, upsample_mode=upsample_mode)
# 最外層
self.model = UNetSkipConnectionBlock(
in_channels, ngf, submodule=unet_block, outermost=True, upsample_mode=upsample_mode
)
self.encoder_freezer = encoder_freezer
self.upsample_switcher = upsample_switcher
def forward(self, x):
return self.model(x)
def freeze_encoder(self):
if self.encoder_freezer is not None:
self.encoder_freezer.freeze(self.model)
def switch_upsample_mode(self, new_mode):
if self.upsample_switcher is not None:
self.upsample_switcher.upsample_mode = new_mode
self.upsample_switcher.switch(self.model)
✅ 使用方式
# 建立 plug-in 物件
encoder_freezer = EncoderFreezer()
upsample_switcher = UpsampleSwitcher(upsample_mode='pixelshuffle')
# 注入 plug-in 並建立模型
model = UNetGenerator(
in_channels=1,
out_channels=1,
num_downs=7,
ngf=64,
encoder_freezer=encoder_freezer,
upsample_switcher=upsample_switcher
)
# 切換上採樣方式
model.switch_upsample_mode('conv')
# 凍結 Encoder
model.freeze_encoder()
這樣的架構具備:
- 模組化、可插拔:功能邏輯抽象成類別,不綁定在模型內部。
- 擴充方便:可未來再加
EncoderUnfreezer
、SelectiveFreezer
、ProgressiveSwitcher
等功能。 - 測試容易:每個功能模組可以單獨測試與替換。
需要我幫你把這部分加到現有的訓練流程裡,或是包成可測試的單元嗎?
結論來說 chatGPT一直鬼打牆,反而是 gemini 一次就正確搞懂需求.
Python
import torch
import torch.nn as nn
import torch.nn.functional as F
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None,
norm_layer=nn.InstanceNorm2d, layer=0, embedding_dim=64,
use_dropout=False, self_attention=False, attention_type='linear',
blur=False, outermost=False, innermost=False, use_transformer=False,
attn_layers=None, up_mode='conv', freeze_downsample=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.innermost = innermost
self.layer = layer
self.attn_layers = attn_layers or []
self._up_mode = up_mode
self.freeze_downsample = freeze_downsample
conv_bias = norm_layer != nn.BatchNorm2d
if input_nc is None:
input_nc = outer_nc
kernel_size = 3 if innermost else 4
stride = 1 if innermost else 2
padding = 1
self.downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=kernel_size, stride=stride, padding=padding, bias=conv_bias)
nn.init.kaiming_normal_(self.downconv.weight, nonlinearity='leaky_relu')
self.downrelu = nn.SiLU(inplace=True)
self.downnorm = norm_layer(inner_nc)
self.uprelu = nn.SiLU(inplace=True)
self.upnorm = norm_layer(outer_nc)
# Define the upsampling layer based on the initial up_mode
self._build_upsample(inner_nc, outer_nc, conv_bias)
self.down = nn.Sequential(self.downconv) if outermost or innermost else nn.Sequential(self.downrelu, self.downconv, self.downnorm)
if innermost:
if use_transformer:
# Assuming TransformerBlock is defined elsewhere
from .transformer_block import TransformerBlock
self.transformer_block = TransformerBlock(inner_nc)
# Assuming FiLMModulation is defined elsewhere
# from .film_layer import FiLMModulation
# self.film = FiLMModulation(inner_nc, embedding_dim)
if hasattr(self, 'film'): # 避免在沒有 FiLM 層時出錯
self.film = FiLMModulation(inner_nc, embedding_dim)
self.up = nn.Sequential(self.uprelu, self.upconv, self.upnorm)
elif outermost:
self.up = nn.Sequential(self.uprelu, self.upconv, nn.Tanh())
else:
self.up = nn.Sequential(self.uprelu, self.upconv, self.upnorm)
if use_dropout:
self.up.add_module("dropout", nn.Dropout(0.3))
self.submodule = submodule
if self_attention and self.layer in self.attn_layers:
# Assuming LinearAttention and SelfAttention are defined elsewhere
from .attention import LinearAttention, SelfAttention
self.attn_block = LinearAttention(inner_nc) if attention_type == 'linear' else SelfAttention(inner_nc)
else:
self.attn_block = None
# Assuming ResSkip is defined elsewhere
# from .residual_skip import ResSkip
# self.res_skip = ResSkip(outer_nc, outer_nc) if not outermost and not innermost and layer in [4, 5, 6, 7] else None
if not outermost and not innermost and layer in [4, 5, 6, 7]:
self.res_skip = ResSkip(outer_nc, outer_nc) if hasattr(self, 'res_skip') else None
# Freeze downsample layers if specified
if self.freeze_downsample:
for param in self.downconv.parameters():
param.requires_grad = False
for param in self.downnorm.parameters():
param.requires_grad = False
def _build_upsample(self, inner_nc, outer_nc, bias):
if self._up_mode == 'conv':
self.upconv = nn.ConvTranspose2d(inner_nc * (2 if not self.innermost and not self.outermost else 1),
outer_nc, kernel_size=4, stride=2, padding=1, output_padding=1, bias=bias)
nn.init.kaiming_normal_(self.upconv.weight)
elif self._up_mode == 'upsample':
self.upconv = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(inner_nc * (2 if not self.innermost and not self.outermost else 1),
outer_nc, kernel_size=3, stride=1, padding=1, bias=bias),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[1].weight)
elif self._up_mode == 'pixelshuffle':
self.upconv = nn.Sequential(
nn.Conv2d(inner_nc * (2 if not self.innermost and not self.outermost else 1),
outer_nc * 4, kernel_size=3, stride=1, padding=1, bias=bias),
nn.PixelShuffle(2),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[0].weight)
else:
raise ValueError(f"Unsupported up_mode: {self._up_mode}. Choose 'conv', 'upsample', or 'pixelshuffle'.")
def switch_upsample_mode(self, new_up_mode):
if new_up_mode not in ['conv', 'upsample', 'pixelshuffle']:
raise ValueError(f"Unsupported up_mode: {new_up_mode}. Choose 'conv', 'upsample', or 'pixelshuffle'.")
if new_up_mode == self._up_mode:
return # No change needed
self._up_mode = new_up_mode
inner_nc = self.downconv.out_channels
outer_nc = self.downconv.in_channels if self.outermost else (self.submodule.downconv.in_channels if self.submodule else inner_nc * 2) # 修正 outer_nc 的判斷
conv_bias = self.upnorm.bias is not None
# Rebuild the upsampling layer
self._build_upsample(inner_nc, self.downconv.in_channels if self.outermost else outer_nc, conv_bias)
# Update the 'up' sequential layer
if self.outermost:
self.up = nn.Sequential(self.uprelu, self.upconv, nn.Tanh())
elif self.innermost:
self.up = nn.Sequential(self.uprelu, self.upconv, self.upnorm)
else:
up_seq = [self.uprelu, self.upconv, self.upnorm]
if hasattr(self.up, 'dropout'):
up_seq.append(self.up.dropout)
self.up = nn.Sequential(*up_seq)
def forward(self, x, style=None):
if hasattr(self, 'attn_block') and self.attn_block is not None:
x = self.attn_block(x)
encoded = self.down(x)
if self.innermost:
if hasattr(self, 'transformer_block'):
encoded = self.transformer_block(encoded)
if hasattr(self, 'film') and style is not None:
encoded = self.film(encoded, style)
decoded = self.up(encoded)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if hasattr(self, 'res_skip') and self.res_skip is not None:
decoded = self.res_skip(decoded)
return torch.cat([x, decoded], 1), encoded.contiguous().view(x.shape[0], -1)
else:
sub_output, encoded_real_A = self.submodule(encoded, style)
decoded = self.up(sub_output)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if hasattr(self, 'res_skip') and self.res_skip is not None:
decoded = self.res_skip(decoded)
if self.outermost:
return decoded, encoded_real_A
else:
return torch.cat([x, decoded], 1), encoded_real_A
class UNetGenerator(nn.Module):
def __init__(self, input_nc=1, output_nc=1, num_downs=8, ngf=32,
embedding_num=40, embedding_dim=64,
norm_layer=nn.InstanceNorm2d, use_dropout=False,
self_attention=False, blur=False, attention_type='linear',
attn_layers=None, up_mode='conv', freeze_layers=None):
super(UNetGenerator, self).__init__()
if attn_layers is None:
attn_layers = []
if freeze_layers is None:
freeze_layers = []
self.unet_blocks = nn.ModuleList()
# 創建 UNet 的下採樣部分
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None,
norm_layer=norm_layer, layer=1, embedding_dim=embedding_dim,
self_attention=self_attention, blur=blur, innermost=True,
use_transformer=True, attention_type=attention_type,
attn_layers=attn_layers, up_mode=up_mode,
freeze_downsample=(1 in freeze_layers)
)
self.unet_blocks.append(unet_block)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=self.unet_blocks[-1],
norm_layer=norm_layer, layer=i+2, use_dropout=use_dropout,
self_attention=self_attention, blur=blur, attention_type=attention_type,
attn_layers=attn_layers, up_mode=up_mode,
freeze_downsample=(i+2 in freeze_layers)
)
self.unet_blocks.append(unet_block)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, submodule=self.unet_blocks[-1], norm_layer=norm_layer, layer=5, up_mode=up_mode, freeze_downsample=(5 in freeze_layers))
self.unet_blocks.append(unet_block)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, submodule=self.unet_blocks[-1], norm_layer=norm_layer, layer=6, up_mode=up_mode, freeze_downsample=(6 in freeze_layers))
self.unet_blocks.append(unet_block)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, submodule=self.unet_blocks[-1], norm_layer=norm_layer, layer=7, up_mode=up_mode, freeze_downsample=(7 in freeze_layers))
self.unet_blocks.append(unet_block)
# 創建 UNet 的最外層(輸出層)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=self.unet_blocks[-1],
norm_layer=norm_layer, layer=8, outermost=True,
self_attention=self_attention, blur=blur,
attention_type=attention_type, attn_layers=attn_layers, up_mode=up_mode
)
self.unet_blocks.append(self.model)
self.embedder = nn.Embedding(embedding_num, embedding_dim)
def _prepare_style(self, style_or_label):
return self.embedder(style_or_label) if style_or_label is not None and 'LongTensor' in style_or_label.type() else style_or_label
def forward(self, x, style_or_label=None):
style = self._prepare_style(style_or_label)
fake_B, encoded_real_A = self.model(x, style)
return fake_B, encoded_real_A
def encode(self, x, style_or_label=None):
style = self._prepare_style(style_or_label)
_, encoded_real_A = self.model(x, style)
return encoded_real_A
def switch_upsample_mode(self, new_up_mode):
for block in self.unet_blocks:
block.switch_upsample_mode(new_up_mode)
# 假設 ResSkip, LinearAttention, SelfAttention, TransformerBlock, FiLMModulation,
# CategoryLoss, PerceptualLoss, EdgeAwareLoss, Discriminator, init_net 這些類別和函數
# 都在其他地方定義並可以被 import。
# 為了讓程式碼可以獨立運行,我將創建一些簡單的佔位符類別。
class ResSkip(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
return self.conv(x) + x
class LinearAttention(nn.Module):
def __init__(self, dim):
super().__init__()
self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=False)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.proj(torch.softmax(self.qkv(x), dim=1))
class SelfAttention(nn.Module):
def __init__(self, dim):
super().__init__()
self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=False)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.proj(torch.softmax(self.qkv(x), dim=1))
class TransformerBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.attn = nn.Conv2d(dim, dim, 1)
self.ffn = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.ffn(self.attn(x)) + x
class FiLMModulation(nn.Module):
def __init__(self, num_features, embedding_dim):
super().__init__()
self.embed = nn.Linear(embedding_dim, num_features * 2)
def forward(self, x, style):
gamma, beta = self.embed(style).chunk(2, dim=-1)
gamma = gamma.unsqueeze(2).unsqueeze(3).expand_as(x)
beta = beta.unsqueeze(2).unsqueeze(3).expand_as(x)
return x * (1 + gamma) + beta
class CategoryLoss(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.criterion = nn.CrossEntropyLoss()
def forward(self, output, target):
return self.criterion(output, target)
class PerceptualLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, fake, real):
return torch.mean(torch.abs(fake - real)) # 簡單的 L1 距離作為範例
class EdgeAwareLoss(nn.Module):
def __init__(self):
super().__init__()
class Discriminator(nn.Module):
def __init__(self, input_nc, embedding_num, ndf=64, blur=False, norm_layer=nn.BatchNorm2d):
super().__init__()
# 簡單的判別器作為範例
self.model = nn.Sequential(
nn.Conv2d(input_nc, ndf, kernel_size=4, stride=2, padding=1),
使用 self._up_mode
而不是直接修改 self.up_mode
的原因,主要是為了在類別內部管理上採樣模式的狀態,並在切換模式時觸發相應的操作。這樣做有以下幾個優點:
- 內部狀態管理:
self._up_mode
可以被視為類別UnetSkipConnectionBlock
內部用於記錄當前上採樣模式的私有變數。使用帶有底線前綴的變數(雖然在 Python 中不是強制的私有,但慣例上表示內部使用)有助於區分外部可訪問的屬性和類別內部使用的狀態。 - 觸發模式切換邏輯: 當你想要切換上採樣模式時,你會調用
switch_upsample_mode()
方法。在這個方法內部,self._up_mode
會被更新為新的模式,並且會觸發重新構建上採樣層 (self._build_upsample()
) 的邏輯。如果直接修改self.up_mode
,就不會有這個額外的步驟來更新網路結構。 - 避免外部直接修改導致不一致: 如果允許外部直接修改
self.up_mode
,例如block.up_mode = 'pixelshuffle'
,那麼上採樣模式的內部狀態雖然改變了,但是實際使用的上採樣層 (self.upconv
) 並不會隨之更新,導致網路行為與預期的模式不符。通過提供一個專門的方法switch_upsample_mode()
,可以確保在模式改變時,網路的相關組件也能正確地更新。 - 封裝性: 使用
self._up_mode
並提供switch_upsample_mode()
方法是一種更好的封裝方式。它將上採樣模式的切換邏輯封裝在類別內部,使得使用者只需要調用一個方法即可完成模式切換,而不需要關心底層是如何實現的。
總結來說:
self._up_mode
是用於追蹤當前上採樣模式的內部狀態變數。switch_upsample_mode()
方法是一個受控的介面,用於安全地切換上採樣模式。在這個方法內部,self._up_mode
會被更新,並且會觸發重新構建上採樣層的邏輯,從而保證網路結構與所設定的模式一致。
這種設計模式使得程式碼更易於管理、維護和理解,並降低了因外部不當修改導致錯誤的可能性。
上面的版本, 有點複雜, 而且有錯誤, 要改太麻煩, 直接改用下列這個版本:
import torch
import torch.nn as nn
import torch.nn.functional as F
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None,
norm_layer=nn.InstanceNorm2d, layer=0, embedding_dim=64,
use_dropout=False, self_attention=False, attention_type='linear',
blur=False, outermost=False, innermost=False, use_transformer=False,
attn_layers=None, up_mode='conv', freeze_downsample=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.innermost = innermost
self.layer = layer
self.attn_layers = attn_layers or []
self.up_mode = up_mode
self.freeze_downsample = freeze_downsample
use_bias = norm_layer != nn.BatchNorm2d
if input_nc is None:
input_nc = outer_nc
kernel_size = 3 if innermost else 4
stride = 1 if innermost else 2
padding = 1
self.downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=kernel_size, stride=stride, padding=padding, bias=use_bias)
nn.init.kaiming_normal_(self.downconv.weight, nonlinearity='leaky_relu')
self.downrelu = nn.SiLU(inplace=True)
self.downnorm = norm_layer(inner_nc)
self.uprelu = nn.SiLU(inplace=True)
self.upnorm = norm_layer(outer_nc)
if outermost:
if self.up_mode == 'conv':
self.upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, output_padding=1, bias=use_bias)
nn.init.kaiming_normal_(self.upconv.weight)
elif self.up_mode == 'upsample':
self.upconv = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[1].weight)
elif self.up_mode == 'pixelshuffle':
self.upconv = nn.Sequential(
nn.Conv2d(inner_nc * 2 if not innermost else inner_nc, outer_nc * 4, kernel_size=3, stride=1, padding=1, bias=use_bias),
nn.PixelShuffle(2),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[0].weight)
else:
raise ValueError(f"Unsupported up_mode: {self.up_mode}. Choose 'conv', 'upsample', or 'pixelshuffle'.")
self.down = nn.Sequential(self.downconv)
self.up = nn.Sequential(self.uprelu, self.upconv, nn.Tanh())
elif innermost:
if self.up_mode == 'conv':
self.upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, output_padding=1, bias=use_bias)
nn.init.kaiming_normal_(self.upconv.weight)
elif self.up_mode == 'upsample':
self.upconv = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[1].weight)
elif self.up_mode == 'pixelshuffle':
self.upconv = nn.Sequential(
nn.Conv2d(inner_nc, outer_nc * 4, kernel_size=3, stride=1, padding=1, bias=use_bias),
nn.PixelShuffle(2),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[0].weight)
else:
raise ValueError(f"Unsupported up_mode: {self.up_mode}. Choose 'conv', 'upsample', or 'pixelshuffle'.")
self.down = nn.Sequential(self.downrelu, self.downconv)
self.up = nn.Sequential(self.uprelu, self.upconv, self.upnorm)
if use_transformer:
# Assuming TransformerBlock is defined elsewhere
from .transformer_block import TransformerBlock
self.transformer_block = TransformerBlock(inner_nc)
# Assuming FiLMModulation is defined elsewhere
# from .film_layer import FiLMModulation
# self.film = FiLMModulation(inner_nc, embedding_dim)
if hasattr(self, 'film'): # 避免在沒有 FiLM 層時出錯
self.film = FiLMModulation(inner_nc, embedding_dim)
else:
if self.up_mode == 'conv':
self.upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, output_padding=1, bias=use_bias)
nn.init.kaiming_normal_(self.upconv.weight)
elif self.up_mode == 'upsample':
self.upconv = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[1].weight)
elif self.up_mode == 'pixelshuffle':
self.upconv = nn.Sequential(
nn.Conv2d(inner_nc * 2, outer_nc * 4, kernel_size=3, stride=1, padding=1, bias=use_bias),
nn.PixelShuffle(2),
self.upnorm
)
nn.init.kaiming_normal_(self.upconv[0].weight)
else:
raise ValueError(f"Unsupported up_mode: {self.up_mode}. Choose 'conv', 'upsample', or 'pixelshuffle'.")
self.down = nn.Sequential(self.downrelu, self.downconv, self.downnorm)
self.up = nn.Sequential(self.uprelu, self.upconv, self.upnorm)
if use_dropout:
self.up.add_module("dropout", nn.Dropout(0.3))
self.submodule = submodule
if self_attention and self.layer in self.attn_layers:
# Assuming LinearAttention and SelfAttention are defined elsewhere
from .attention import LinearAttention, SelfAttention
self.attn_block = LinearAttention(inner_nc) if attention_type == 'linear' else SelfAttention(inner_nc)
else:
self.attn_block = None
# Assuming ResSkip is defined elsewhere
# from .residual_skip import ResSkip
# self.res_skip = ResSkip(outer_nc, outer_nc) if not outermost and not innermost and layer in [4, 5, 6, 7] else None
if not outermost and not innermost and layer in [4, 5, 6, 7]:
self.res_skip = ResSkip(outer_nc, outer_nc) if hasattr(self, 'res_skip') else None
# Freeze downsample layers if specified
if self.freeze_downsample:
for param in self.downconv.parameters():
param.requires_grad = False
for param in self.downnorm.parameters():
param.requires_grad = False
def forward(self, x, style=None):
if hasattr(self, 'attn_block') and self.attn_block is not None:
x = self.attn_block(x)
encoded = self.down(x)
if self.innermost:
if hasattr(self, 'transformer_block'):
encoded = self.transformer_block(encoded)
if hasattr(self, 'film') and style is not None:
encoded = self.film(encoded, style)
decoded = self.up(encoded)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if hasattr(self, 'res_skip') and self.res_skip is not None:
decoded = self.res_skip(decoded)
return torch.cat([x, decoded], 1), encoded.contiguous().view(x.shape[0], -1)
else:
sub_output, encoded_real_A = self.submodule(encoded, style)
decoded = self.up(sub_output)
if decoded.shape[2:] != x.shape[2:]:
decoded = F.interpolate(decoded, size=x.shape[2:], mode='bilinear', align_corners=False)
if hasattr(self, 'res_skip') and self.res_skip is not None:
decoded = self.res_skip(decoded)
if self.outermost:
return decoded, encoded_real_A
else:
return torch.cat([x, decoded], 1), encoded_real_A
class UNetGenerator(nn.Module):
def __init__(self, input_nc=1, output_nc=1, num_downs=8, ngf=32,
embedding_num=40, embedding_dim=64,
norm_layer=nn.InstanceNorm2d, use_dropout=False,
self_attention=False, blur=False, attention_type='linear',
attn_layers=None, up_mode='conv', freeze_layers=None):
super(UNetGenerator, self).__init__()
if attn_layers is None:
attn_layers = []
if freeze_layers is None:
freeze_layers = []
# 創建 UNet 的下採樣部分
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None,
norm_layer=norm_layer, layer=1, embedding_dim=embedding_dim,
self_attention=self_attention, blur=blur, innermost=True,
use_transformer=True, attention_type=attention_type,
attn_layers=attn_layers, up_mode=up_mode,
freeze_downsample=(1 in freeze_layers)
)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, layer=i+2, use_dropout=use_dropout,
self_attention=self_attention, blur=blur, attention_type=attention_type,
attn_layers=attn_layers, up_mode=up_mode,
freeze_downsample=(i+2 in freeze_layers)
)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, submodule=unet_block, norm_layer=norm_layer, layer=5, up_mode=up_mode, freeze_downsample=(5 in freeze_layers))
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, submodule=unet_block, norm_layer=norm_layer, layer=6, up_mode=up_mode, freeze_downsample=(6 in freeze_layers))
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, submodule=unet_block, norm_layer=norm_layer, layer=7, up_mode=up_mode, freeze_downsample=(7 in freeze_layers))
# 創建 UNet 的最外層(輸出層)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block,
norm_layer=norm_layer, layer=8, outermost=True,
self_attention=self_attention, blur=blur,
attention_type=attention_type, attn_layers=attn_layers, up_mode=up_mode
)
self.embedder = nn.Embedding(embedding_num, embedding_dim)
def _prepare_style(self, style_or_label):
return self.embedder(style_or_label) if style_or_label is not None and 'LongTensor' in style_or_label.type() else style_or_label
def forward(self, x, style_or_label=None):
style = self._prepare_style(style_or_label)
fake_B, encoded_real_A = self.model(x, style)
return fake_B, encoded_real_A
def encode(self, x, style_or_label=None):
style = self._prepare_style(style_or_label)
_, encoded_real_A = self.model(x, style)
return encoded_real_A
# 假設 ResSkip, LinearAttention, SelfAttention, TransformerBlock, FiLMModulation,
# CategoryLoss, PerceptualLoss, EdgeAwareLoss, Discriminator, init_net 這些類別和函數
# 都在其他地方定義並可以被 import。
# 為了讓程式碼可以獨立運行,我將創建一些簡單的佔位符類別。
class ResSkip(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
return self.conv(x) + x
class LinearAttention(nn.Module):
def __init__(self, dim):
super().__init__()
self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=False)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.proj(torch.softmax(self.qkv(x), dim=1))
class SelfAttention(nn.Module):
def __init__(self, dim):
super().__init__()
self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=False)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.proj(torch.softmax(self.qkv(x), dim=1))
class TransformerBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.attn = nn.Conv2d(dim, dim, 1)
self.ffn = nn.Conv2d(dim, dim, 1)
def forward(self, x): return self.ffn(self.attn(x)) + x
class FiLMModulation(nn.Module):
def __init__(self, num_features, embedding_dim):
super().__init__()
self.embed = nn.Linear(embedding_dim, num_features * 2)
def forward(self, x, style):
gamma, beta = self.embed(style).chunk(2, dim=-1)
gamma = gamma.unsqueeze(2).unsqueeze(3).expand_as(x)
beta = beta.unsqueeze(2).unsqueeze(3).expand_as(x)
return x * (1 + gamma) + beta
class CategoryLoss(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.criterion = nn.CrossEntropyLoss()
def forward(self, output, target):
return self.criterion(output, target)
class PerceptualLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, fake, real):
return torch.mean(torch.abs(fake - real)) # 簡單的 L1 距離作為範例
class EdgeAwareLoss(nn.Module):
def __init__(self):
super().__init__()
是的,當 freeze_downsample=True
時,你的優化器(optimizer)仍然需要傳遞模型中可訓練的參數。
原因:
freeze_downsample=True
的作用: 這個設定會將UnetSkipConnectionBlock
中下採樣卷積層 (self.downconv
) 和下採樣歸一化層 (self.downnorm
) 的requires_grad
屬性設置為False
。這意味著這些層的參數在反向傳播過程中不會計算梯度,因此也不會被優化器更新。- 模型中仍然存在可訓練的參數: 即使你凍結了下採樣層,UNet 模型中仍然存在其他可訓練的參數,例如:
- 上採樣卷積層 (
self.upconv
) 及其歸一化層 (self.upnorm
) 的參數。 - 最外層的輸出卷積層的參數。
- 最內層可能存在的 Transformer 塊或 FiLM 層的參數。
- 注意力機制 (
self.attn_block
) 的參數(如果使用)。 - 殘差跳躍連接 (
self.res_skip
) 的卷積層參數(如果使用)。 UNetGenerator
中的 Embedding 層 (self.embedder
) 的參數。
- 上採樣卷積層 (
- 優化器的職責: 優化器的目標是更新模型中所有
requires_grad
為True
的參數,以最小化損失函數。如果你不將這些可訓練的參數傳遞給優化器,那麼它們將永遠不會被更新,模型的訓練將無法進行或不完整。
正確的做法:
在創建優化器時,你需要遍歷你的 UNetGenerator
(self.netG
) 的所有參數,並將它們傳遞給優化器。PyTorch 的 torch.optim
模塊會自動識別哪些參數的 requires_grad
為 True
並對它們進行優化。
範例程式碼 (在 Zi2ZiModel.setup()
方法中):
Python
def setup(self):
# ... (模型定義部分) ...
# 將 netG 的所有參數傳遞給優化器
self.optimizer_G = torch.optim.AdamW(self.netG.parameters(), lr=self.lr, betas=(self.beta1, 0.999), weight_decay=self.weight_decay)
self.optimizer_D = torch.optim.AdamW(self.netD.parameters(), lr=self.lr, betas=(self.beta1, 0.999), weight_decay=self.weight_decay)
# ... (scheduler 等其他設定) ...
總結:
即使你凍結了部分下採樣層,模型中仍然存在其他需要訓練的參數。因此,在創建優化器時,你應該將整個生成器模型 (self.netG.parameters()
) 的參數都傳遞給它。優化器會自動處理只更新 requires_grad
為 True
的參數。
使用 conv 上採樣, 訓練出來的checkpoint 的 l1_loss 已經到5, 但改用 pixelshuffle 進行上採樣訓練, 並 freeze down sample, 持續訓練的 l1_loss 維持到 35 ~ 39, 是不是等l1_loss 低於 10 再解凍 down sample 比較好?
這其實是一個非常合理、實務上常見的策略,特別是在做模型微調或階段性訓練(stage-wise training)時。以下是針對你情況的說明與建議:
🔍 狀況回顧:
- 使用
conv
上採樣訓練出來的 checkpoint,L1 loss ≈ 5
,已經相當低。 - 切換成
pixelshuffle
上採樣,freeze downsample 區塊,再訓練時,L1 loss ≈ 35 ~ 39
,代表新上採樣結構還沒適應現有 features。 - 擔心 premature 解凍 downsample 會造成 feature drift,使整個模型不穩。
✅ 建議:等 L1 loss < 10 再解凍 downsample 是明智的
這樣做的原因如下:
1️⃣ 先讓 pixelshuffle 的 decoder 適應現有 encoder features
- 凍結 downsample 可以確保 encoder 提供的 feature 是穩定的(原本 conv 上採樣學來的),
- pixelshuffle 的 decoder 有足夠的時間去學會如何解析這些 feature 並產生合適輸出。
2️⃣ 等 decoder 收斂後,再允許 encoder 微調
- 當 decoder 已經有基本能力後,再解凍 encoder(downsample),可以共同微調,
- 避免一開始兩邊都亂動,導致 learning signal 擴散或惡化。
3️⃣ 設定一個解凍閾值是穩定策略
- 建議設一個觸發條件,例如:
L1 loss < 10
且持續下降- 或者 validation set 有明顯提升(若有)
- 屆時再執行:
model.unfreeze_encoder()
或類似方法。
💡 額外建議(進階技巧):
- warmup decoder → joint tuning: 你可以視 pixelshuffle decoder 的收斂狀況設一個 epoch/step 門檻,例如:
if epoch >= 10 or running_l1_loss < 10: model.unfreeze_encoder()
- lr scheduler 可以分開設計: 若使用
optimizer.param_groups
,可給 encoder 比較小的 learning rate,讓其慢慢 fine-tune,避免破壞原有特徵。 - visual check + loss 追蹤: 可視化生成圖像與 loss trend,會有助於決定最佳的解凍時機。
如果你需要我幫你寫個自動化解凍策略的 training loop callback(比如 L1 loss < 閾值就解凍
),也可以隨時說 👌
需要我幫你整理一版嗎?